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Abstract 
The recent development of single-cell techniques is essential to 
unravel complex biological systems. By measuring the transcriptome 
and the accessible genome on a single-cell level, cellular 
heterogeneity in a biological environment can be deciphered. 
Transcription factors act as key regulators activating and repressing 
downstream target genes, and together they constitute gene 
regulatory networks that govern cell morphology and identity. 
Dissecting these gene regulatory networks is crucial for 
understanding molecular mechanisms and disease, especially within 
highly complex biological systems. 
The gene regulatory network analysis software ANANSE and the motif 
enrichment software GimmeMotifs were both developed to analyse 
bulk datasets. We developed scANANSE, a software pipeline for gene 
regulatory network analysis and motif enrichment using single-cell 
RNA and ATAC datasets. 
The scANANSE pipeline can be run from either R or Python. First, it 
exports data from standard single-cell objects. Next, it automatically 
runs multiple comparisons of cell cluster data. Finally, it imports the 
results back to the single-cell object, where the result can be further 
visualised, integrated, and interpreted. Here, we demonstrate our 
scANANSE pipeline on a publicly available PBMC multi-omics dataset. 
It identifies well-known cell type-specific hematopoietic factors. 
Importantly, we also demonstrated that scANANSE combined with 
GimmeMotifs is able to predict transcription factors with both 
activating and repressing roles in gene regulation.
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Introduction
Single-cell RNA-sequencing (scRNA-seq) and single-cell ATAC-sequencing (scATAC-seq), enable measurement of
gene transcripts (Islam et al., 2014) and genome accessibility (Buenrostro et al., 2015) at single-cell resolution. By
performing single-cell sequencing on complex biological tissues and systems, various types of cells present in the system
can be identified. Furthermore, gradual changes during development and differentiation trajectories can be scrutinised.
The transcriptome and accessible genome of various cell populations can be quantified, which is not obtainable using
bulk analyses (Huang, 2009; Li and Clevers, 2010). Capturing heterogeneity is vital in studying complex tissues, or while
studying gradual processes such as development and differentiation, in which not all cells develop at the same rate or
follow the same trajectory (Welch, Hartemink and Prins, 2016).

One of the main drivers of differences in cellular identity and developmental processes are transcription factors (TFs).
To regulate gene expression, many TFs bind the DNA directly on DNA binding motifs. These motifs are present within
cis-regulatory elements (CREs), which are functionally categorised as promoters, enhancers, or insulators (Lambert et al.,
2018; Chen and Pugh, 2021). These cis-regulatory elements (CREs) can be used to scan for binding motifs. However,
motif enrichment does not take into account the target of CREs, the nearby genes. To better predict the impact and
importance of TFs, modelling gene regulatory networks (GRNs) is preferable.

By combining (differential) gene expression, genome accessibility, and motif enrichment, with the nearby location of
target genes, it is possible to generate a directed GRN. Software to predict GRNs have been actively developed since the
emergence of next-generation sequencing (Mercatelli et al., 2020). The addition of genome accessibility data and
incorporation of long-range CREs is a successful method to model directed-GRNs (Xu et al., 2021; González-Blas et al.,
2022; Kamal et al., 2022). Since both scRNA-seq and scATAC-seq are available, performing directed GRN analysis can
now be applied to single-cell datasets.

There are multiple single-cell-based GRN tools available, capable of combining scRNA-seq and scATAC-seq data
(Kamimoto, Hoffmann and Morris, 2020; Fleck et al., 2021; González-Blas et al., 2022; Kartha et al., 2022). However,
since single-cell data contains shallow coverage per cell and one of themain challenges these tools face is using this sparse
data. Furthermore, since these tools are specifically designed for single-cell data, making comparisons of their results with
available bulk datasets is challenging.

In contrast, using single-cell data from clusters as pseudo-bulk can be used relatively straightforwardly as input for many
GRN tools available. To identify key TFs using GRN approaches, we previously developed the gene regulatory network
analysis software ANANSE (Xu et al., 2021). ANANSE has multiple advantages: it incorporates CRE signal in 100kb
windows, contains extensive TF binding models trained on the REMAP database, and can analyse data on all vertebrate
species and even on non-vertebrate species with some additional steps. Theoretically, ANANSE could be run on single-
cell pseudo-bulk data; however, the steps involved in generating data per cluster and running all the needed pairwise
comparisons are labour-intensive and non-intuitive, while they require extensive bio-informatic skills.

Here, to enable ANANSE single-cell cluster analysis, we have developed an analysis pipeline called single-cell
ANANSE (scANANSE). This pipeline consists of newly developed packages to export data from single-cell objects,
either Seurat objects using the R implementation (AnanseSeurat), or from Scanpy objects using the Python implemen-
tation (AnanseScanpy). Next, an automated snakemake pipeline of ANANSE facilitates the GRNmodelling. In parallel,
it integrates motif enrichment analysis using GimmeMotifs (van Heeringen and Veenstra, 2011; Bruse and Heeringen,
2018). This addition is used to identify TFs with repressive properties, which are generally not properly predicted by
ANANSE. Lastly, transcription factor influence score and motif enrichment results can be imported back into the single-
cell object for downstream analysis and visualisation.

The performance of the scANANSE pipeline is demonstrated on a publicly available PBMC multi-omics dataset, as an
example workflow including the installation of all software needed to run the analysis. In this PBMC case study,
scANANSE uncovered many well-known activating TFs within the hematopoietic lineages. IncludingCEBPD and SPI1
in monocytes, EBF1 and MEF2C in B-cells, and STAT4 and LEF1 in T-cells. In addition, motif enrichment and
expression correlation identify both the well known repressors PAX5 and STAT6 within B-cells.

Methods
Implementation
The scANANSE pipeline consists of two components: a package to export data from and import data towards single-cell
objects, and a snakemake implementation of ANANSE called anansnake (Figure 1). Crucial steps before running
scANANSE are pre-processing, quality control, and clustering of single-cell data. For these steps, a large number of well-
described workflows are available (Zappia and Oshlack, 2018; Luecken and Theis, 2019; Baek and Lee, 2020).
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scANANSE exports data from the single-cell object of choice. Transcripts Per Million (TPM), Differential Expressed
Genes (DEGs) and peak counts need to be calculated based on the single-cell objects supplied. For Seurat objects in the
programming language R, the R package “AnanseSeurat” was developed to perform these steps. While for Scanpy
objects in the programming language Python, the Python package “AnanseScanpy” was developed.

Figure 1. An overview of the single-cell ANANSE pipeline. After pre-processing and clustering, data is exported
using either AnanseSeurat or AnanseScanpy. Next, Anansnake automatically runs ANANSE after which the influence
scores andmotif enrichment results with AnanseSeurat or AnanseScanpy are imported. In parallel, Anansnake runs
motif enrichment analysis using gimme maelstrom, and the motif results are imported and linked to the highest
correlating TFs using the single-cell object scRNA-seq data.
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The TPM counts, DEGs, and ATAC peak counts can be exported from one single-cell object containing both the
scRNA-seq data and scATAC-seq data, or from two separate single-cell objects. In the case of two single-cell objects,
these objects need to share their cluster names, e.g. by transferring anchors between separate scRNA-seq and scATAC-
seq datasets (Stuart et al., 2019). As such, scRNA-seq and scATAC-seq data frommultiple studies or experiments can be
combined and used as input.

By default, scANANSE compares each cluster to a gene regulatory network built from the average expression and
gene accessibility of all clusters. This average network is used as a common comparison to compare all clusters.
These comparisons result in an average GRN ‘TF-influence’ score. This score quantifies the importance of a TF driving
the differences between a specific cluster and the average of all other cell clusters. In this way, the TF influence score can
be compared across multiple clusters. In addition to this general approach, more detailed direct cluster-to-cluster GRN
analyses are possible.

One downside of theGRNmodelling ofANANSE is the lack of prediction of repressive TFs. To counteract this blind spot
of the algorithm, motif enrichment with GimmeMotifs is performed in the scANANSE pipeline. It not only performs
motif enrichment but is combinedwith a correlation ofmotif-z-scores and TF expression across clusters within the single-
cell object. This addition enables the ability to predict repressive TFs.

Finally, both AnanseSeurat and AnanseScanpy can be used to import the TF influence and motif enrichment scores back
into your single-cell object for further visualisation and analysis. All the source code and the conda environment YAML
files used to generate the results presented in this article are available in Github and Zenodo (Arts et al., 2022).

Operation
Minimal system requirements
Acomputer runningUNIX, Linux,Windows Subsystem for Linux (WSLorMacOS can run scANANSE. Aminimumof
32 GB of RAM and 100 GB Of disk space is needed for a typical analysis, however, an amount of 64 GB of RAM is
recommended to decrease runtime.

Use cases: PBMC monocytes
The multi-omics dataset generated on human Peripheral blood mononuclear cells (PBMCs) publicly provided by 10�
(PBMC from a Healthy Donor (v1, 150�150) Single Cell Multiome ATAC + Gene Expression Dataset by Cell Ranger
ARC 2.0.0, 10� Genomics, 2022, December 20) is used as a case study. The scANANSE pipeline can also handle
separate scRNA-seq and scATAC-seq objects with identical cluster names. However, within this example, scRNA-seq
and scATAC-seq are part of the same single-cell object.

Part 1: Installation and setup
The package management system Conda is installed with two environments: anansnake and scANANSE. The following
folder structure is used:

1a. Create folders

mkdir -p scANANSE/analysis
mkdir -p scANANSE/data

Page 5 of 22

F1000Research 2023, 12:243 Last updated: 19 JUN 2023



1b. Install Conda

The operating system and computing environment are set up as listed in theminimal system requirements. Next, Conda is
installed.

# Install Conda
wget https://repo.anaconda.com/miniconda/Miniconda3-py38_4.12.0-Linux-x86_64.sh
bash Miniconda3-py38_4.12.0-Linux-x86_64.sh
rm Miniconda3-py38_4.12.0-Linux-x86_64.sh

# Configure Conda
conda config --add channels bioconda
conda config --add channels conda-forge
conda config --set channel_priority strict
conda install mamba -y

1c. Install the anansnake Conda environment

mamba create -n anansnake anansnake

1d. Install the R Conda environment

wget
https://raw.githubusercontent.com/JGASmits/AnanseSeurat/main/inst/scANANSE.yml
mamba env create -f scANANSE.yml

1e. Install hg38

The location where Genomepy installs genomes is set using the -g flag. Since UCSC has three annotations for hg38, the
version with HGNC gene names is selected, using --UCSC-annotation. scANANSE requires HGNC gene names to run.

conda activate anansnake
genomepy install hg38 -g scANANSE/data --UCSC-annotation refGene

1f. Install AnanseSeurat and R packages

There are code blocks equivalent for exporting and visualising the data in python using Ananscanpy. See the extended
data file “AnanseScanpy_equivalent.pdf” in the extended data (Arts et al., 2022) for these same steps but in Python. If
RStudio needs to be installed on your system, see “install_Rstudio.pdf” in the extended data on Zenodo (Arts et al., 2022).

conda activate scANANSE
rstudio

From R (studio):

install.packages("AnanseSeurat")

Part 2: Quality control and clustering of scRNA-seq and scATAC-seq data
In this example we use data from 10x pre-processed by a vignette from Signac (2022). This dataset comes with a vignette
performing default quality control, clustering, and annotation from the PBMC atlas fromHao et al. (2021). Proper quality
control and clustering are vital for all single-cell analyses for these topics, however, there already exist some excellent
reviews about these topics (Zappia and Oshlack, 2018; Luecken and Theis, 2019; Baek and Lee, 2020).
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2a. Download the raw data (optional)

cd scANANSE/data

wget
https://zenodo.org/record/7575107/files/pbmc_granulocyte_sorted_10k_filtered_
feature_bc_matrix.h5
wget
https://zenodo.org/record/7575107/files/pbmc_granulocyte_sorted_10k_atac_
fragments.tsv.gz
wget
https://zenodo.org/record/7575107/files/pbmc_granulocyte_sorted_10k_atac_
fragments.tsv.gz.tbi
wget
https://zenodo.org/record/7575107/files/pbmc_multimodal.h5seurat

cd ../..

2b. Pre-process single-cell data (optional)

An R Markdown file with all subsequent steps in R, including the pre-processing is available and can be downloaded.

wget
https://raw.githubusercontent.com/JGASmits/AnanseSeurat/main/inst/scANANSE.Rmd
-O scANANSE/scANANSE.Rmd

The pre-processing analysis follows the Signac multi-omics vignette (‘Signac’, 2022)

The QC steps can be skipped by downloading the processed Rds file.

wget
https://zenodo.org/record/7575107/files/preprocessed_PBMC.Rds

Alternatively, the processed h5ad objects for AnanseScanpy can be downloaded.

wget
https://zenodo.org/record/7575107/files/rna_PBMC.h5ad -O scANANSE/rna_PBMC.h5ad
wget
https://zenodo.org/record/7575107/files/atac_PBMC.h5ad -O scANANSE/atac_PBMC.h5ad

Part 3: Export single-cell cluster data
3a. Export cluster CPM, ATAC peak counts, and RNA-seq Counts

For the ATAC-seq data, a matrix containing the counts per peak per cluster is generated. For RNA-seq, CPM equivalent
values are needed. Since the data is UMI normalised, CPM is already equivalent to regular depth normalised data
(Phipson, Zappia and Oshlack, 2017). By default, scANANSE compares all clusters to a network based on the average
values of all clusters. Additional comparisons can be specified, in this case, B-naive and B-memory cells were also
specified to compare directly to each other.

conda activate scANANSE
rstudio

Page 7 of 22

F1000Research 2023, 12:243 Last updated: 19 JUN 2023



# Load the required R libraries
library(Seurat)
library(SeuratDisk)
library(stringr)
library(ComplexHeatmap)
library(circlize)
library(ggplot2)
library(AnanseSeurat)
library(SeuratDisk)

# Load pre-processed seurat object RDS file
rds_file <- './scANANSE/preprocessed_PDMC.Rds'
pbmc <- readRDS(rds_file)
export_CPM_scANANSE(pbmc,

in_cells <- 25,
output_dir ='./scANANSE/analysis',
cluster_id = 'predicted.id',
RNA_count_assay = 'RNA')

export_ATAC_scANANSE(pbmc,
min_cells <- 25,
output_dir ='./scANANSE/analysis',
cluster_id = 'predicted.id',
ATAC_peak_assay= 'peaks')

# Specify additional contrasts:
contrasts <- c('B-naive_B-memory',

'B-memory_B-naive')
config_scANANSE(pbmc,

min_cells <- 25,
output_dir ='./scANANSE/analysis',
cluster_id = 'predicted.id',
additional_contrasts = contrasts)

DEGS_scANANSE(pbmc,
min_cells <- 25,
output_dir ='./scANANSE/analysis',
cluster_id = 'predicted.id',
additional_contrasts = contrasts)

3b. File examples

Table 1. TPM file data. Example of values and layout of the TPM.tsv file generated by the export_CPM_scANANSE()
function.

CD4-Naive CD4-TCM average

MIR1302-2HG 0 0 0

FAM138A 0 0 0

OR4F5 0 0 0

AL627309.1 236 1.007 1.118
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Part 4: Anansnake
Next, snakemake is run from within a screen session. This takes approximately 3 hours per cluster plus 2 hours for motif
enrichment analysis, but this is also highly dependent on computer speed. With less than 64 GB of RAM available, we
recommend downscaling the core number to a maximum of 6 cores. With more RAM and more cores available the core
count should be increased to reduce analysis time.

Additionally, it is possible to add extra samples and/or networks to the anansnake run. This enables including other
samples and other networks in your comparisons.When performing additional anansnake comparisons please go through
the anansnake documentation in detail.

screen
conda activate anansnake

# Update the timestamps so snakemake doesn't try to regenerate the DEG files if you
make changes to the config or sample file
for DEGfile in scANANSE/analysis/deseq2/*;do touch -m $DEGfile;done

anansnake \
--configfile scANANSE/analysis/config.yaml \
--resources mem_mb=48_000 --cores 12

Part 5: Import and visualise ANANSE results
5a. Import the ANANSE results

After running ANANSE with anansnake, the influence output is imported back into the single-cell object.

conda activate scANANSE
rstudio

Table 2. Peak counts file data. Example of values and layout of the Peak_Counts.tsv file generated by the
export_ATAC_scANANSE() function.

CD4-Naive CD4-TCM Average

chr1:10032-10322 5 22 5

chr1:180709-181030 6 20 5

chr1:181296-181600 10 12 5

chr1:191304-191914 7 12 5

Table 3.Marker gene file data. Example of values and layout of thehg38_cluster_average.diffexp.tsv file generated
by the DEGS_scANANSE() function.

log2FoldChange padj

RTKN2 1.595.097.268 0

FOXP3 630.731.206 0

IKZF2 1.933.892.393 2.26E-241

IL2RA 1.372.494.589 7.02E-241
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pbmc <- import_seurat_scANANSE(
pbmc,
cluster_id = 'predicted.id',
anansnake_inf_dir = "./scANANSE/analysis/influence"

)

# export the data per cluster from the single-cell object
TF_influence <- per_cluster_df(pbmc,

assay = 'influence',
cluster_id = 'predicted.id')

head(TF_influence)

5b. Top five influential TFs per cluster

Next, the top five TFs per cluster are identified from the influence table.

TF_influence$TF <- rownames(TF_influence)
TF_long <- reshape2::melt(TF_influence, id.vars = 'TF')
colnames(TF_long) <- c('TF','cluster', 'influence')
TF_influence$TF <- NULL
TF_long <- TF_long [order(TF_long$influence, decreasing = TRUE), ]

# get the top n TFs per cluster
topTF <- Reduce(rbind,

by(TF_long,
TF_long ["cluster"],
head,
n = 5))# Top N highest TFs by cluster

top_TFs <- unique(topTF$TF)

TF_table <- topTF %>%
dplyr::group_by(cluster) %>%
dplyr::mutate('TopTFs' = paste0(TF, collapse = " "))

unique(TF_table [,c('cluster','TopTFs')])

Table 4. Influence table. Example of the influence data frame generated by per_cluster_df(assay = ‘influence’).

B-intermediate B-memory B-naive CD14-Mono CD16-Mono

EBF1 1 1 1 0 0

SPIB 0.9375 0.913043 0 0 0

REL 0.875 0.391304 0.947368 0.818182 0.943396

TCF4 0.8125 0.695652 0.736842 0 0

BACH2 0.75 0.391304 0.894737 0 0
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5c. Heatmap of most influential TFs

An overview of the top TF and their various influences in the various clusters is visualised by a heatmap. The column and
row dendrogram are manually swapped where appropriate resulting in the final TF influence heatmap (see Figure 2).

col_fun = circlize::colorRamp2(c(0, 1), c("white", "orange"))
mat <- as.matrix(TF_influence[rownames(TF_influence) %in% top_TFs,])

pdf('./scANANSE/analysis/ANANSE_Heatmap.pdf',width=16,height=8,paper='special')
ComplexHeatmap::Heatmap(mat, col = col_fun)
dev.off()

By using scANANSE, a large number of well-known hematopoiesis hallmark TFs is identified (see Figure 2 and Table 5).
This demonstrates the ability of scANANSE to identify important transcription factors from single-cell data. Some well-
known examples are:

Monocytes TFs include, SPI1 which is well known to regulate human monocyte differentiation towards dendritic cells
and is identified in both monocytes and dendritic cells (Rosa et al., 2007; Novershtern et al., 2011; Zhu et al., 2012).
While the CEBP gene family, including the identified CEBPD, is vital for the transduction of B-cells into macrophages
(Bussmann et al., 2009).

Dendritic cell TFs including IRF4 (Tamura et al., 2005) were identified as driving Interferon producing pDCs (Siegal
et al., 1999).

Hematopoietic stem cell TFs include GATA2 (Menendez-Gonzalez et al., 2019, p. 2), ERG (Knudsen et al., 2015) and
MEIS1 (Novershtern et al., 2011; Ariki et al., 2014). All these factors are all well-known regulators of hematopoietic stem
cell identity.

B-cell TFs include EBF1 and MEF2C. Both are well-known to drive the B-cell lineage (Kong et al., 2016;
Bullerwell et al., 2021, p. 1), while PAX5 is another well-known B-cell fate driving factor (Enver, 1999, p. 5;

Table 5. Top five TF influence scores per cell type. Referenced TFs in the text are in bold and highlighted.

Cluster Cluster type: Top TFs

CD14-Mono monocytes BACH1 CEBPD FOXO3 JUN RBPJ

CD16-Mono MAFB NR4A1 RARA RXRA SPI1

pDC Dendritic cells BCL11A CUX2 IRF4 MYBL2 SPIB

cDC2 BCL11A BHLHE40 ETS2 RUNX2 SPI1

HSPC progenitor cells ERG ETV6 GATA2 MEIS1 MYB

B-intermediate B cells BACH2 EBF1 MEF2C REL SPIB

B-memory BCL11A EBF1 MEF2C PAX5 REL

B-naive BACH2 BCL11A EBF1 FOXO1 REL

CD4-Naive CD4 T-cells BACH2 FOXO1 FOXP1 LEF1 TCF7

CD4-TCM GATA3 LEF1 MAF RORA TCF7

CD4-TEM MAF PBX4 RORA STAT4 TCF7

Treg ETS1 GATA3 LEF1 PRDM1 RORA

CD8-Naive CD8 T-cells BACH2 FOXO1 FOXP1 LEF1 TCF7

CD8-TCM GATA3 KLF9 NR3C2 RUNX3 STAT4

CD8-TEM NK-cells EOMES MYBL1 RORA RUNX3 TBX21

gdT other T-cells IKZF2 MYBL1 RORA RUNX3 STAT4

MAIT EOMES IKZF2 RORA RORC STAT4

NK NK-cells RORA RUNX3 STAT4 TBX21 XBP1
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Medvedovic et al., 2011, p. 5). In particular, PAX5 is an intriguing finding since it is not only well known to promote
B-cell genes, but also to repress non-B-cell lineage genes (Boller and Grosschedl, 2014). This repressive property is
however not included in the ANANSE analysis. And its prediction is likely attributed to the smaller effect of gene
activation PAX6 has on specific target genes.

T-cell TFs include both GATA3 and LEF1, which are crucial for specifying the T-cell fate (Novershtern et al., 2011).
Furthermore,more specific to naive T-cells,FOXO1 (Kerdiles et al., 2009, p. 1) andFOXP1 (Feng et al., 2010) are known
to maintain naive T-cell quiescence.

Differentiated T-cell TFs include the well-known STAT4 (Novershtern et al., 2011; Suarez-Ramirez et al., 2014), and
for both CD8+ T-cells and NK cells the well-known TF EOMES (Shimizu et al., 2019) are identified.

5d. Visualise TF expression and influence on a UMAP

The presence of the influence scores enabled clear visualisation of the influence and expression of specific TFs across
the dataset. As an example, three TFs are visualised with a wide variety of influence and expression across clusters
(see Figure 3).

Figure 2. Heatmap of the influence scores. This heatmap depicts the influence scores of the top five highest
influential TFs per cluster. Referenced TFs in the text are in bold.
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Figure 3. Expression and influence visualisation upon the UMAP. (A) UMAP of the PBMC single-cell object with
the cell identities labelled. (B) Normalised expression values of STAT4, LEF1, and MEF2C on the single-cell object.
(C) Influence scores of STAT4, LEF1, and MEF2C on the single-cell object.
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highlight_TF1 <- c('STAT4','LEF1','MEF2C')

Annotated_plot <- DimPlot(pbmc,
label = T,
repel = TRUE,
reduction = "umap")+ NoLegend()

DefaultAssay(object = pbmc) <- "RNA"
plot_expression <- FeaturePlot(pbmc,

features = highlight_TF1,
ncol = 1)

DefaultAssay(object = pbmc) <- "influence"
plot_ANANSE <- FeaturePlot(pbmc,

ncol = 1,
features = highlight_TF1,
cols = c("darkgrey", "#fc8d59"))

pdf('./scANANSE/analysis/ANANSE_highlight.pdf',width=10,height=10,paper=
'special')
print(Annotated_plot)
print(plot_expression|plot_ANANSE)
dev.off()

Part 6: Specific cluster comparison
Although all B-cell clusters were relatively similar when compared to the average network, it is possible to directly
compare both clusters. This uncovers TFs driving more subtle differences between the cell types. This direct cluster-to-
cluster comparison is performed by adding the two clusters in part 3 as an additional contrast.

When comparing Naive B-cells and Memory B-cells, FOXP1 and BACH2 were identified as important
factors driving Memory B-cell maturation compared to naive B-cells. This is in line with previous publications
(Itoh-Nakadai et al., 2014; Patzelt et al., 2018). Furthermore, EBF1 and SPIB were identified as driving Naive
B-cells, this is also in line with previous research (Schmidlin et al., 2008; Györy et al., 2012). Thus, these results
illustrate the possibility of running comparisons on similar clusters within single-cell datasets to further identify TF
networks that define cell types (Figure 4).

Figure 4. ANANSE can perform direct cluster-to-cluster comparisons. The TF influence scores of TFs comparing
Naive B-cells and Memory B-cells; higher influence of factors with negative fold changes are more important within
memory B-cells; higher influence of factors with positive fold changes are more important in Memory B-cells. Circle
size correlates with the number of direct target genes. Gene expression log2 fold change between Naive B-cells and
memory B-cells on the X axis.
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MemoryInfluence <- read.table(
'./scANANSE/analysis/influence/anansesnake_B-memory_B-naive.tsv',
header = T)

NaiveInfluence <- read.table(
'./scANANSE/analysis/influence/anansesnake_B-naive_B-memory.tsv',
header = T)

NaiveInfluence$factor_fc <- NaiveInfluence$factor_fc* -1
B_comparison <- rbind(NaiveInfluence,MemoryInfluence)

ggplot(B_comparison, aes(factor_fc,influence_score)) +
geom_point(aes(size = direct_targets, colour = influence_score)) +
xlim(-2,2)+
geom_text(

aes(
label=ifelse(factor_fc > 0.26|factor_fc < -0.5,as.character(factor),""),

hjust = 0.5,
vjust = 2

))

Optional part: Motif enrichment for predicting repressive factors
Since ANANSE's assumptions for GRN modelling are not valid for repressive factors, one limitation is the inability to
reliably predict repressive TFs. Motif enrichment can be used for identifying motifs with reduced accessibility, however
due to the lack of a one-on-one link of motifs and TFs, and the difference of these interactions between tissues, it is tricky
to reliably link motifs with their most relevant factors in the cell type of interest.

However, with single-cell cluster data, it is possible to link motifs and TFs based on motif and expression correlation
across multiple clusters. This approach does enable scANANSE to identify potential repressive factors. It is however a
step down from the GRN modelling approach, but for identifying potential repressive factors it is an easy step to
incorporate, which we therefore choose to include.

We will first incorporate the enrichment result after running anansesnake.

Import motif enrichment scores

pbmc <- import_seurat_maelstrom(pbmc,
cluster_id = 'predicted.id',
maelstrom_file = './scANANSE/analysis/maelstrom/final.out.txt')

# export the data per cluster from the single-cell object
motif_scores <- per_cluster_df(pbmc,

assay = 'maelstrom',
cluster_id = 'predicted.id')

head(motif_scores)

Table 6.Motif score table. Example of theMotif score data frame generated by per_cluster_df(assay = ‘maelstrom’).

CD4-Naive CD4-TCM CD8-Naive CD16-Mono NK

GM.5.0.GATA.0013 2.615203 1.610542 4.671053 -5.09854 2.947372

GM.5.0.C2H2-ZF.0188 -0.54753 -0.40019 1.878645 0.401215 1.746373

GM.5.0.Nuclear-receptor.0109 -1.65902 -2.74995 -1.7461 2.672638 -0.32766

GM.5.0.Forkhead.0058 0.629503 0.139509 -0.17629 0.621033 1.049713
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Link TFs to motifs based on their correlation coefficient

The enriched motifs are linked to TFs based on the non-redundant motif-TF database generated by GimmeMotifs.
A correlation score is calculated between the motif-z-scores and TF expression values. When multiple TFs map to the
same motif of interest, the TF with the highest absolute correlation is linked to this motif. After linking all motifs, one TF
can be linked to multiple motifs. In that case, there are multiple options for selecting the most relevant motif.

First of all, it is possible to take the mean motif score, secondly by selecting the motif with the most variable signal, or
thirdly by selecting the motif with the highest absolute correlation between enrichment and expression. Here we use the
motifs with the highest correlation to the expression.

Finally, two assays are added to the single-cell object, one consisting of a positive correlation with linked motifs, which
indicates a TF promoting genome accessibility, and one assay consisting of a negative correlation with linked motifs,
which indicates TFs repressing genome accessibility. A TF can be present in both assays when it is linked both with a
motif with a positive correlation and a motif with a negative correlation.

pbmc <- Maelstrom_Motif2TF(pbmc,
cluster_id = 'predicted.id',
maelstrom_dir = './scANANSE/analysis/maelstrom/',
RNA_expression_assay = "SCT",
output_dir ='./scANANSE/analysis',
expr_tresh = 10,
cor_tresh = 0.3,
combine_motifs = 'max_cor')

Visualise TF expression and motif enrichment

Next, the top TFs of with a negative correlation were visualised as a heatmap (Figure 5A).

col_fun <- circlize::colorRamp2(c(-5,0,5), c('#998ec3','white','#f1a340'))
col_fun_cor <- circlize::colorRamp2(c(-1,0,1), c('#7b3294','#f7f7f7','#008837'))

for (regtype in c('TFcor','TFanticor')){
top_TFs <- head(pbmc@assays [[regtype]][[]],15)
mat <- per_cluster_df(pbmc, assay = regtype, cluster_id = 'predicted.id')
mat <- as.matrix(mat[rownames(mat) %in% rownames(top_TFs),])

#get TF expression matrix
exp_mat <- AverageExpression(pbmc,assay='SCT',
slot = 'data',
features = rownames(top_TFs),
group.by = 'predicted.id')[[1]]

exp_mat <- exp_mat [,colnames(exp_mat)]
exp_mat <- as.matrix(t(scale(t(exp_mat))))
#get correlation score
row_ha = rowAnnotation(correlation = top_TFs$cor, col = list(correlation =

col_fun_cor))
print(Heatmap(exp_mat [,cluster_order], cluster_columns = F) +

Heatmap(mat [,cluster_order], col = col_fun, cluster_columns = F,
right_annotation = row_ha))

}

This identified multiple repressive hallmark TFs (Figure 5A). Examples and well known important repressors driving
hematopoiesis include PAX5 (Souabni et al., 2002, p. 1), STAT6 (Czimmerer et al., 2018), ID2 (Ji et al., 2008), and
PRDM1 (Chan et al., 2009, p. 1; Nadeau and Martins, 2022).
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TF_list <- c('PAX5','STAT6')
Factor_Motif_Plot(pbmc, TF_list, assay_maelstrom = 'MotifTFanticor',
logo_dir = './scANANSE/analysis/maelstrom/logos/')

Conclusions
Here we demonstrate that scANANSE is able to decipher the gene regulatory networks driving the identity of single-cell
clusters. This enables the identification of TFs that drive the cellular identity of single-cell clusters of scRNA-seq and
scATAC-seq datasets.

Currently, there are multiple other tools available and under development for performing GRN analysis using
a combination of scRNA-seq and scATAC-seq data. Examples include software such as SCENIC+(González-Blas
et al., 2022), Pando (Fleck et al., 2021), CellOracle (Kamimoto, Hoffmann and Morris, 2020) and FigR (Kartha et al.,
2022). These tools have the advantage and the challenge of calculating GRNs using individual cells. While they are not
relying on clustering before GRN analysis, these tools struggle at identifying low expressed target genes and TFs since
individual cells have low transcriptome coverage. Comparing and benchmarking all these single-cell GRN tools is
beyond the scope of this paper, but would be an exciting addition to the field in the future.

scANANSE has some clear advantages. First of all, it has the ability to analyse single-cell data generated from all
vertebrate genomes. When working with non-vertebrate data, extra steps for identifying homologous genes across phyla
are required before running scANANSE. For more information on that topic, see the ANANSE documentation on the
motif database. This flexibility enables GRN analysis on single-cell data from a high variety of organisms. Furthermore,

Figure 5. Motif enrichment repressive TFs. (A) Heatmap of top negatively correlating motifs & TFs. (B) UMAP
example of anti-correlation factors PAX5 and STAT6.
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due to the pseudo-bulk approach, it is possible to compare single-cell cluster gene regulatory networks against networks
generated from traditional bulk sequencing data. Although the amount of publicly accessible single-cell datasets is
growing, there is an even larger amount of bulk sequencing datasets available. Moreover, the possibility and flexibility of
comparing GRNs from multiple sources is another advantage of scANANSE, extra care and validation is still needed
when using networks from different data sources.

scANANSE makes a few assumptions that are important to note regarding the average network comparison. Using the
average network as the background comparison against each cluster-specific network enables the identification of TFs
driving each specific cluster. In the case of small cluster numbers, this approach is however limiting the reliability and the
number of factors identified since the average network contains accessibility data from all clusters including the cluster
being compared. In cases with low cluster numbers, it is therefore recommended to run scANANSE including pairwise
comparisons between all the clusters.

Another limitation of the GRN modelling of ANANSE is its inability to predict repressive transcription factors, or
factors with context-dependent and/or repressive properties (Krishnakumar et al., 2016; Pang and Snyder, 2020). While
deciphering molecular mechanisms, the inclusion of repressive factors and factors with context-dependent purpose is
highly useful (Gaston and Jayaraman, 2003; Bauer, Buske and Bailey, 2010; Arnold et al., 2013). ANANSE however
uses a rank mean approach which assumes all TF target gene relations are activating, while furthermore requiring a TF to
be higher expressed. These assumptions are not always applicable to TFs with repressive or context-dependent functions
(Xu et al., 2021). To alleviate some of this limitation, we have integrated motif enrichment analysis from the
GimmeMotifs toolkit. Combining the motif z-score with a correlation of TF expression provides a straightforward tool
to link motifs to the most relevant TFs which can be repressive. However, this approach does not take into account the
potential combinatorial function of TFs (Zeitlinger, 2020) and/or missing interactions in the TF to motif database.

With scANANSE, we have implemented a robust and capable toolkit to identify key TFs important for driving cellular
identity and differentiation in single-cell data. It relies on solid pseudo-bulk signals and proven bulk-GRN approaches to
identify the TFs of interest.

Data availability
Underlying data
PBMC datasets used in this study were obtained from 10x Genomics (10x Genomics, 2021), This data is available under
the terms of the Creative Commons Four (CC BY 4.0). The reference PBMC dataset used for cluster annotation was
obtained from Hao et al (Hao et al., 2021).

Zenodo: Datasets accompanying scANANSE (Arts et al., 2022). https://doi.org/10.5281/zenodo.7575107

This project contains the following underlying data:

• pbmc_granulocyte_sorted_10k_atac_fragments.tsv.gz (raw datafile1 (10x Genomics, 2021))

• pbmc_granulocyte_sorted_10k_atac_fragments.tsv.gz.tbi (raw datafile2 (10x Genomics, 2021))

• pbmc_granulocyte_sorted_10k_filtered_feature_bc_matrix.h5 (raw datafile3 (10x Genomics, 2021))

• pbmc_multimodal.h5seurat (Reference PBMC dataset used for cluster annotation from Hao et al. (2021))

Extended data
Preprocessed single cell objects, code to install Rstudio and the python code equivalent for all the steps are available as
well in Zenodo archive as extended data.

This project contains the following extended data:

• rna_PBMC.h5ad (Processed Scanpy object containing the PBMC dataset scRNAseq data after quality control
clustering and annotation)

• atac_PBMC.h5ad (Processed Scanpy object containing the PBMCdataset scATACseq data after quality control
clustering and annotation)
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• preprocessed_PBMC.Rds (Processed Seurat object containing the PBMC dataset after quality control cluster-
ing and annotation)

• Install_Rstudio.pdf (code to install Rstudio on your machine)

• AnanseScanpy_equivalent.pdf (code of the Python equivalent of all R code present in this manuscript)

Software availability
• AnanseSeurat is https://github.com/JGASmits/AnanseSeurat (version 1.1.0). It is furthermore downloadable

available from CRAN: https://cran.r-project.org/web/packages/AnanseSeurat/index.html

• AnanseScanpy is https://github.com/Arts-of-coding/AnanseScanpy (version 1.0.0) It is furthermore available
from bioconda: https://anaconda.org/bioconda/anansescanpy

• Anansnake is https://github.com/vanheeringen-lab/anansnake It is furthermore available from bioconda:
https://anaconda.org/bioconda/anansnake

License: AnanseSeurat, AnanseScanpy and Anansnake are all available under an Apache License 2.0
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The authors have developed scANANSE, a pipeline for gene network analysis and transcription 
factor binding motif analysis. scANANSE is a software tool that facilitates the creation of cell type-
specific networks from gene expression data and ATAC-seq data. scANANSE employs pseudo bulk 
data, enabling comparisons with algorithms that rely on bulk data. 
 
scANANSE serves as an extension package of ANANSE, incorporating additional features such as 
data conversion from single cell data and the ability to return network analysis results to single 
cell data. Although data processing and manipulation are often overlooked aspects in general, 
they hold significant importance. This software offers the advantage of easily performing such 
operations, which enhances its practicality. The manuscript effectively conveys the purpose, 
adaptations, and limitations of scANANSE, while also providing clear examples of code usage. The 
overall organization is well-executed. 
 
I have no major comments or requests to add. I will provide some minor feedback regarding 
specific findings from utilizing the software. 
 
1. I got error when importing SeuratDisk. The SeuratDisk may not be included in the installation. 
Also, it seems SeuratDisk is not available from CRAN for R version 4. I installed SeuratDisk from 
GitHub. 
It may be helpful to add this process in installation. 
"" 
Attaching SeuratObject 
Error in library(SeuratDisk) : there is no package called 'SeuratDisk' 
"" 
 
2. At page8, the file name of Seurat object may include typo. 
The file name in R script is "preprocessed_PDMC.Rds". It should be "preprocessed_PBMC.Rds"
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Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes
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